
S Ramanathan et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 7) May 2016, pp.47-51

www.ijera.com 47 | P a g e

Low Power Adaptive FIR Filter Based on Distributed Arithmetic

S Ramanathan
1
, Gorty Anand

1
, Prasanth Reddy

1
, Prof. Sri Adibhatla Sridevi

2

1
(M.Tech, VLSI Design, School of Electronics Engineering (SENSE), VIT University, Vellore)

2
(Associate Professor, Micro & Nanoelectronics, School of Electronics Engineering (SENSE), VIT University,

Vellore)

ABSTRACT
This paper aims at implementation of a low power adaptive FIR filter based on distributed arithmetic (DA) with

low power, high throughput, and low area. Least Mean Square (LMS) Algorithm is used to update the weight

and decrease the mean square error between the current filter output and the desired response. The pipelined

Distributed Arithmetic table reduces switching activity and hence it reduces power. The power consumption is

reduced by keeping bit-clock used in carry-save accumulation much faster than clock of rest of the operations.

We have implemented it in Quartus II and found that there is a reduction in the total power and the core dynamic

power by 31.31% and 100.24% respectively when compared with the architecture without DA table.

Keywords: Adaptive filter, Distributed Arithmetic, Finite Impulse Response, Least Mean Square algorithm,

Lookup Table

I. INTRODUCTION

An adaptive filter tries to model the

relationship between two real time signals using an

iterative approach [1].

Four aspects defines an adaptive filter:

1) The input signals of the filter

2) The impulse response of the filter

3) The filter coefficients

4) The adaptive algorithm that is used to adjust the

weights

The LMS algorithm given by Widrow-Hoff

is used to update the tapped-delay line FIR filter's

weights because of its simplicity and convergence

performance provided by it [2].

DA based technique without multipliers [3],

are used as they provide high-throughput processing

capability and regularity that results in computing

structures that are cost-effective and area-time

efficient [4].

II. THE ADAPTIVE FILTER
In the block diagram shown in Fig.1 a

sample of x(n), the input signal, is fed to adaptive

filter and the filter outputs y(n). This output is then

compared with d(n), the desired response, and the

difference of the two is the error signal e(n) as

shown in (1).

 e (n) = d (n) - y (n) (1)

Fig. 1. The general adaptive filter

Fig. 2. System identification using adaptive filter

The error signal is fed to the adaptive filter

which, in a well-defined manner, updates the

coefficients of the filter from time n to time (n + 1).

Through this adaptation process, as n increases, the

magnitude of e (n) decreases, or in other words, the

output of the adaptive filter tends to the desired

response signal.

Let x (n) be the input to an unknown

system and let d̂ (n) be its corresponding output.

Then, the desired response signal is given by

 d (n) = d̂ (n) + η (n) (2)

The role of adaptive filter here is to

precisely represent d̂ (n) at its output. It can be

said that the adaptive filter driven by x (n), has

accurately modeled the unknown system if y (n) = d̂

(n).

III. LMS ADAPTIVE ALGORITHM
In every cycle, the LMS algorithm

calculates an output and the corresponding error

value. It then uses the estimated error to update the

weights in every cycle. The LMS adaptive filter

weights in nth iteration are updated as per the

following equations.

w(n + 1) = w(n) + μ.e(n).x(n) (3a)

RESEARCH ARTICLE OPEN ACCESS

S Ramanathan et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 7) May 2016, pp.47-51

www.ijera.com 48 | P a g e

Where

e(n) = d(n) - y(n) (3b)

y(n) = w
T
 (n).x(n) (3c)

At the nth iteration, x(n) the input vector

and w(n) the weight vector, are respectively given

by,

x(n) = [x(n), x(n - 1),…,x(n - N + 1)]
T
 (4a)

w(n) = [w0(n),w1(n),…,wN-1(n)]
T
 (4b)

In the above equations, d(n) denotes the

desired response, y(n) denotes the filter's output in

the nth iteration, e(n) is the error computed in the nth

iteration and it is used for updating the weights, μ is

the convergence-factor and N is the length of the

filter.

In pipelined designs, only after certain

number of cycles, the feedback error e(n) becomes

available, this deley is known as the ―adaptation-

delay‖. Hence the pipelined architectures use e(n -

m) which is the delayed error in place of recent-most

error to update the current weight. Here m denotes

the adaptation-delay. The following equation is the

weight-update equation of such delayed LMS

adaptive filter

w(n + 1) = w(n) +μ.e(n - m).x(n - m) (5)

IV. DA-BASED APPROACH FOR

INNER-PRODUCT COMPUTATION
In every cycle, the LMS adaptive filter has

to compute an inner-product and this contributes to

the most of the critical-path. Let the inner-product of

(3c) be given by (6) for simplicity of presentation,

and is in fact the arithmetic sum of products which

defines the response of linear time-invariant (LTI)

network.

 N-1

 y = ∑ wk.xk (6)

k = 0

Where xk and wk form the N-point vectors

corresponding the recent-most N-1 input and current

weights respectively for 0 ≤ k ≤ N-1. Assuming the

bit-width of the weight to be L, each component of

weight vector can be expressed in 2’s complement

representation as shown in (7).

 L-1

 wk = - wk0 + ∑ wkl.2
-l
 (7)

l = 1

where wkl is the lth bit of wk. Substituting (7) in

(6), we get

 N-1 L-1

 y = ∑ xk [- wk0 + ∑ wkl.2
-l
] (8)

k = 0 l = 1

Fig. 3. Conventional DA-based implementation of 4-

point inner-product.

rewriting (8), we get

 N N L-1

 y = - ∑ wk0.xk + ∑ ∑ wkl.xk.2
-l
 (9)

k = 1 k = 1 l = 1

expanding (9), we get (10)

y = - [w10.x1 + w20.x2 + w30.x3 + … + wk0.xk]

 + [w11.x1 + w21.x2 + w31.x3 + … + wk1.xk] 2
-1

 + [w12.x1 + w22.x2 + w32.x3 + … + wk2.xk] 2
-2

 :

 + [w1(B-2).x1 + w2(B-2).x2 + … + wk(B-2).xk] 2
-(B-2)

 + [w1(B-1).x1 + … +wk(B-1).xk] 2
-(B-1)

 (10)

Every term inside the brackets is actually a

binary AND operation that involves all the bits of

the constant and one bit of the input and the plus

signs are arithmetic sum operations. An LUT can

now be constructed which can be addressed by the

same scaled bit of all the input variables and can

access the sum of the terms inside each pair of

brackets. Fig.3 shows the LUT.

Converting the sum-of-products form of

(10) into a distributed form, we get (11)

Fig. 4. Carry-save implementation of the shift-

accumulation.

S Ramanathan et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 7) May 2016, pp.47-51

www.ijera.com 49 | P a g e

Fig. 5. DA-table for generation of the possible

sums of the input samples.

 N-1 N-1 L-1

 y = - ∑ wk0.xk + ∑ 2
-l
 . [∑ xk.wkl] (11)

k = 0 k = 0 l = 1

the inner-product given by (11) is computed as

 L-1 N-1

 y = [∑ 2
-l
.yl] - y0 where yl = ∑ xk.wkl (12)

l = 1 k = 1

The partial-sum yl for l = 0, 1,2,…,L-1, can

have 2
N
 possible values, as the elements of the N-

point bit-sequence {wkl for 0 ≤ k ≤ N - 1} can be

either 0 or 1.

Fig. 6. The structure of DA-based LMS adaptive

filter of length N = 4.

Now, using the bit-sequence {wkl} as

address bits for the computation of inner-product, we

can read out the partial sums yl from the LUT, if we

precompute all the 2
N
 possible values of yl and store

it in the LUT.

Therefore, inner-product of (12) can be

calculated be calculated in L cycles of shift-

accumulation which is followed by the LUT read

operations corresponding to L number of bit-slices

{wkl} for 0 ≤ l ≤ L-1. This is shown in Fig.3. The

shift-accumulation is performed using carry-save

accumulator, as the shift-accumulation shown in

Fig.3 involves significant critical-path. This is

shown in Fig.4. The bit-slices of vector w are given

to the carry-save accumulator one after the other in

the order LSB to MSB. But in case of MSB slices,

the negative or the 2’s complement of the output of

the LUT must to be accumulated. This could easily

be achieved using XOR gates. Therefore, all the bits

of LUT output are fed to XOR gates with sign-

control input. If MSB slice appears as address, then

alone the sign-control is set to 1. So the XOR gates

produce the 1’s complement of the LUT output if

MSB slice appears as address and does not affect the

output for other cases. Lastly, the sum and carry

words that are obtained after L clock cycles are

added by an adder and the input carry of this adder is

set to 1 to account for the 2’s complement operation

of the LUT output for the MSB slice.

Fig. 7. (a) Structure of 4-point inner-product block.

(b) Structure of weight increment block for N = 4.

(c) The logic which is used for the generation of the

control word t for the barrel-shifter for L = 8.

Fig. 8. Structure of DA-based LMS AF with N =

16 and P = 4.

The content of kth LUT location is expressed as

 N-1

 ck = ∑ xj.kj (13)

j = 0

S Ramanathan et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 7) May 2016, pp.47-51

www.ijera.com 50 | P a g e

where kj is (j + 1)th bit of the N-bit binary

representation of integer k where k lies in the range

0 ≤ k ≤ 2
N
 - 1. We can pre-compute ck for 0 ≤ k ≤ 2

N

- 1 and store it in a RAM-based LUT of 2
N
 words.

But here we store (2
N
 - 1) words in a DA-table that

consists of 2
N
 - 1 registers, in place of storing 2

N

words in LUT. Fig.5 shows an example of one such

DA-table for N = 4. It has only 15 registers that are

used to store the sums of input words which are pre-

computed. Seven adders in parallel, compute seven

new values of ck.

V. DA BASED ADAPTIVE FILTER

STRUCTURE
Fig.6 shows the structure of DA-based adaptive filter

of filter length N = 4. It has a 4-point inner-product

and a block for weight-increment, along with the

additional circuits required for the computation of

e(n), the error value and the control word t for

barrel-shifters.

As shown in Fig.7a, the 4-point inner-product block

consists of a DA-table that has an array of 15

registers that store the partial-inner-products yl for l

in range 0 < l ≤ 15 and to select the content of one of

these registers, a 16 : 1 MUX which is used.

Bit-slices of weights A = {w3l w2l w1l w0l}

for 0 ≤ l ≤ L - 1 are given to the MUX as control in

the order LSB to MSB, and the output of MUX is

given to carry-save accumulator which is shown in

Fig. 4.

The carry-save accumulator shift-

accumulates all the partial-inner-products after L bit-

cycles, and generates two words of size (L + 2)-bit

each during these L bit-cycles, one for sum and other

one for the carry. The sum and carry words are

shifted-added with an input carry ’1’ in order to

generate filter output which is subtracted from d(n),

the desired output, later to obtain the error value

e(n).

By assuming N = PQ, we can now

decompose inner-product computation of (6) into N

= P small adaptive filtering blocks of length P as

shown in (14)

 P-1 2P-1 N-1

y = ∑ wk.xk + ∑ wk.xk + … + ∑ wk.xk

 (14)

k = 0 k = P k = N-P

Each of the above mentioned P-point inner-

product computation blocks, to update P weights,

have weight-increment unit. The structure for N = 16

and P = 4 is shown in the Fig.8. It has four inner-

product blocks of length P = 4 as shown in Fig.7a.

Two separate binary adder-trees are used to add the

(L + 2)-bit carry and sum produced by these four

blocks. Four carry-in bits are added to the sum

words which are the output of four 4-point inner-

product blocks. At the first level binary adder-tree of

the carry words, two carry-in bits are set as the input

carry, as carry words are of twice the weight as

compared to sum words. This is same as inclusion of

four carry-in to sum words.

To make the length of sign-magnitude

separator as L-bit, assuming μ = 1/N, we can

truncate the 4 LSBs of error e(n) for N = 16. The

performance of adaptive filter is not very much

affected by the truncation as the design

requires the location of most significant 1 of μ.e(n).

VI. RESULTS
The Low Power Adaptive FIR Filter Based

on Distributed Arithmetic has been implemented in

S Ramanathan et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 7) May 2016, pp.47-51

www.ijera.com 51 | P a g e

Quartus II and we have compared it with an

architecture without distributed arithmetic table.

TABLE I. POWER CONSUMPTION
Architecture Power Consumption

Total Power Core Dynamic Power

Conventional

FIR Filter

110.77mW 24.91mW

DA-Based

LMS Adaptive
FIR Filter

84.36mW 12.44mW

It is found that there is a reduction in the

total power and the core dynamic power by 31.31%

and 100.24% respectively when compared with the

architecture without DA table.

VII. CONCLUSION
We have implemented an efficient

pipelined architecture for high-throughput, low-

power and low-area DA-based adaptive filter.

Throughput rate is quite significantly improved by

means of concurrent processing of weight-update

and filtering operation and the parallel LUT update.

For computation of the filter output, we have used a

carry-save accumulation unit for signed partial-

inner-products computation.

ACKNOWLEDGEMENTS
We have implemented a Low Power

Adaptive FIR Filter Based on Distributed Arithmetic

under the supervision of Prof. Sri Adibhatla Sridevi,

Associate Professor, SENSE. We thank her for

providing proper guidance and timely help which

helped us to successfully complete the work.

REFERENCES
Books:

[1]. Douglas S.C. Introduction to Adaptive

Filters, Digital Signal Processing

Handbook, Ed. Vijay K. Madisetti and

Douglas B. Williams, Boca Raton: CRC

Press LLC, 1999.

[2]. S. Haykin and B. Widrow, Least-mean-

square adaptive filters. Wiley-Interscience,

Hoboken, NJ, 2003.

Journal Papers:

[3]. S. A. White, ―Applications of the

distributed arithmetic to digital signal

processing: A tutorial review,‖ IEEE ASSP

Magazine, vol. 6, no. 3, pp. 5–19, Jul. 1989.

[4]. S. Y. Park And P. K. Meher, "Low-Power,

High-Throughput, and Low-Area Adaptive

FIR Filter Based On DA" IEEE

Transactions on Circuits And Systems—II,

Express Briefs, vol. 60, no. 6, June 2013,

pp. 346-350.

